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Abstract

Genetic association studies have made a major contribution to our understanding of the genetics of
complex disorders over the last 10 years through genome-wide association studies (GWAS). In this chapter,
we review the key concepts that underlie the GWAS approach. We will describe the “common disease,
common variant” theory, and will review how we finally afforded to capture the common variance in
genome to make GWAS possible. Finally, we will go over technical aspects of GWAS such as genotype
imputation, epidemiologic designs, analysis methods, and considerations such as genomic inflation, multi-
ple testing, and replication.
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1 Introduction

It has long been known that the risk of complex disorders such as
cardiovascular diseases, type 2 diabetes, or cancer is highly affected
by the genetic background of the individual, however, the exact
genetic structures that convey the risk were unknown. Researchers
have applied different approaches in recent decades to pinpoint the
genes that predispose individuals to complex disorders. In this
chapter we focus on the genome-wide association study or
GWAS, a novel approach that has revolutionized the study of
genetics of complex disorders. This approach examines the whole
genome in an agnostic system for regions where DNA sequence
variations regulate a complex trait or affect the risk of the disease.
The findings of GWAS could have several implications. It could
either be used to identify individuals who are at a higher risk of the
disease or to shed light on pathways that underlie complex disease.
The latter not only enhances our knowledge of the disease, but may
also contribute to developing novel medications. Alternatively, this
information could be used in the context of precision medicine to
tailor the medication for better effects or less adverse effects. In this
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chapter, we will briefly review the technology, study design, and
analytical methods that are used in GWAS.

2 Genetic Association Versus Linkage Study

2.1 Genetic Variants

2.2 Gommon or Rare
Variants

2.3 Gommon Disease
Common Variant
Hypothesis

The genome or the totality of the genetic material of a cell varies
from individual to individual. The variations could be existence of
an excess piece of DNA (insertion), missing pieces (delete), or
single nucleotide mutations [1]. When mutations are present in
more than 1% of the population, they are called single nucleotide
polymorphism or SNP. However, in recent years, mutations are
referred to as rare or low-frequency SNPs in the literature. Given
their simplicity, abundance, and dispersion across the whole
genome, SNPs were the first and yet are the most common type
of variation that is studied in GWAS. Insertion and deletions
(Indel)s are also studied in recent GWAS next to SNPs.

Variants have different frequencies. Some are present in a small
proportion of the population and some others are very common.
There are also private variants that are only identified in one indi-
vidual. So far millions of variants are discovered in humans and
sequencing further individuals will discover more novel variants.
The novel variants, of course, are likely to be rare variants in general
population. However, any rare or low-frequency variant may be
common in a specific ethnic group or an isolated population.

The frequency of the variants is commonly expressed by minor
allele frequency (MAF). The fraction indicates the abundance of the
less common variant in the pool of alleles in the reference popula-
tion. For instance, a MAF of 0.3 means that 30% of the alleles
carried by the populations are the one that is less common in the
reference population. The frequencies could be different in study
population than the reference population. As a result, MAF in a
sample may sometimes exceed 0.5.

Common disease, common variant hypothesis, is one of the founda-
tions of GWAS. This hypothesis states that common disorders are
likely to be influenced by common genetic variants. On one hand,
given that common diseases occur in a large proportion of the
population, the causal genes could not be rare. On the other hand,
the causal variants should, in comparison with rare variants, have a
small effect. Otherwise, nearly all who have inherited the deleterious
variants should develop the disease which is in contrast to the
multifactorial nature of the complex diseases. For instance, a single
high penetrance variant with a MAF of 0.30 should lead to a disease
that happens in nearly 30% of the population. Therefore, common
variants by definition cannot have high penetrance. However,
genetic studies have shown that complex disorders such as
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cardiovascular diseases and cancer are highly heritable. The conclu-
sion is that common diseases are caused by multiple genetic variants.

In recent decade GWAS has tested the common disease, com-
mon variant hypothesis for a wide range of traits and diseases
[2]. Although the variants that are identified are continuously
increasing, the small effect of genetic variants has led to small
percentage of variance explained by these variants. This supports
the common disease common variant hypothesis, although this
does not exclude the role of rare variants in developing common
diseases next to common variants.

Genome-wide search for genetic risk factors has been done in two
methods: genome-wide linkage study (GWLS) and GWAS. GWLS
looks for physical segments of the genome that is linked to a given
trait or disease. It compares the inheritance of traits or diseases with
inheritance of DNA segments in a pedigree. GWLS was applied
successfully to identify rare genetic variants that contribute to
monogenic disorders or highly penetrant traits. It was also applied
to multifactorial traits and diseases to map their regulating locus.
Nevertheless, it had limited success when it was applied to common
disorders like coronary artery disease, asthma, diabetes, or psychi-
atric disorders. Therefore, it was concluded that the genetic archi-
tecture of common disorders is different from rare disorders and
will require different investigation approaches [3].

GWAS, however, is based on use of a large number of SNPs or
other markers that are genotyped in known linkage regions and is
studied in unrelated individuals. Compared to GWLS, GWAS have
several advantages. First, it has a better genetic resolution. The
resolution is in centimorgan range for GWLS and in kilobases for
GWAS. Therefore, GWAS pinpoints the causal gene in a better way.
In fact, the most significant SNP in GWAS is cither the causal
variant or is located in its vicinity. GWLS, however, highlights a
large region that may include up to hundreds of genes. GLWS are
also difficult to be used for late-onset diseases. A researcher should
find family pedigrees including a couple of generations. However,
GWAS could be applied to general populations with different age
distributions. Finally, GWLS is the most efficient when one gene is
inherited in a family but when it comes to multiple genes in general
population, GWAS provide a better statistical power [4].

In conclusion, the most efficient approach to study genetics of'a
trait or disorder depends on the magnitude of effect and allele
frequency of the variants that will be used. The variants with large
effects are not likely to be common. Common variants with small
effect are the ones that are targeted by GWAS and rare variants with
large effect are best studied by GWLS. Rare variants with small
effects are a real challenge to study and are not investigated much in
recent years. Sequencing in large sample sizes may be an approach
for this type of genetic effects.
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3 Capturing the Common Variation in Genome

3.1 Linkage
Disequilibrium

Genetic variants that are located on a chromosome are inherited
together. However, this tie is broken apart through generations by
genetic recombination. Genetic recombination involves the pairing
of homologous chromosomes during meiosis. In a population with
random mating, recombination events decrease the correlation
between genetic variants and eventually all alleles in the population
become independent. When two variants are inherited independent
of each other, they are called “in linkage equilibrium.” Likewise,
the correlation that may remain between two variants is referred to
as “linkage disequilibrium” or LD. LD describes the degree to
which a genetic variant is inherited together with another genetic
variant in a population over time. LD between two genetic variants
could be different from one population to another depending on
the distance from the founder population, and mating patterns. For
instance, the genome of African and African-descent populations,
due to being the oldest human population, have gone through
more recombination events and therefore include smaller corre-
lated regions compared to other ethnic groups such as Caucasians
or Asians.

The level of linkage disequilibrium between two genes is
measured by various indices [5]. The coefhicient of linkage disequi-
librium (D) is defined as

D:PAB—(PAXPB)

where Py and Py are the allele frequency at two loci and PAB is
the frequency of A and B occurring together (AB haplotype). D is
a difficult coefficient to interpret since its range of possible values
depends on the frequencies of the two alleles. As an alternative, D is
defined as D divided by the maximum difference between the
observed and expected allele frequencies (D/ = D/ Dpyin)- D varies
between — 1 and 1. A D of I or — 1 means that there is no evidence
for recombination between the markers. If allele frequencies are the
same, the two variants give the same information and
could be used as surrogates for each other. A D of 0 indicates
that the two variants are inherited independent of each other
(in perfect equilibrium).

An alternative to D is the correlation coefficient (%) that is

expressed as
D
2 = Pa(1-ra) Py (1-p)

Correlation coefficient or 77 is between 0 and 1. Higher values
indicate that the genetic variants are highly correlated and in
essence include the same genetic variance. The implication of a
high LD for genetic studies is that genotyping and study of only
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one of the variants may be enough and the second variant includes
redundant information.

Given that LD is usually high between close by variants in a
region, the genome could be broken down into pieces with high
LD. These pieces are called LD blocks. By use of this concept, one
can study a limited number of variants and yet capture the whole
genetic variation of the genome. The short listed genetic variants
that are used in such an approach are called “tagging” variants.

In order to achieve a shortlist of SNPs that could represent the
whole genome, we needed a comprehensive set of information on
the LD pattern of the genome. The HapMap international Project
was an effort to draw the inheritance pattern of LD blocks in
different ethnic groups and to interrogate the common variation
in human genome [6]. The project conducted whole genome
sequencing techniques to identify common SNPs and characterize
their LD pattern. It was done primarily in a number of European
descent populations, the Yoruba population of African origin, Han
Chinese individuals from Beijing, and Japanese individuals from
Tokyo. The data from the HapMap project indicated that more
than 80% of the common variation in human genome could be
captured by studying approximately 500,000-1,000,000 SNPs
across the genome. The first wave of the GWAS were based on
nearly 2,500,000 SNPs that were introduced by the HapMap
project. Later, other sequencing projects such as the 1000 Gen-
omes project or local sequencing efforts were used as a backbone
for GWAS.

Although the HapMap project played a crucial role in making
GWAS possible, its data browser is not available since June 2016.
This is mainly due to the fact that more recent projects such as the
1000 Genomes project are becoming the standard for research in
population genetics and genomics.

GWAS were aiming to look up the whole genome for variants that
modify the physiology of human body and regulate a trait or affect
the risk of a disease. To this end, one should take a challenging and
exhaustive effort of studying all genetic variants across the genome.
However, the shortlist of SNPs provided by projects such as Hap-
Map allowed us to study the association of such biologically func-
tional variants even if the variant was not present in the shortlist. The
LD between the HapMap chosen SNP and the functional variant
allowed indirect examination of the association between the variant
and the trait or disease of interest [7]. Although this approach
increases the coverage of the genome, one should be careful when
it comes to interpreting the results of a GWAS. The identified SNPs
in GWAS are in most cases not the main functional variant that
regulates the trait or causes the disease. It is in fact a tagging SNP
that is in high LD with the functional variant in the region.
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4 How Did We Afford to Cover the Whole Genome?

4.1 Genolyping
Technologies

4.2 Imputations

Although the HapMap project introduced a short list of few hun-
dred thousand SNPs to cover the common variance of the genome,
genotyping so many SNPs with low-throughput methods that was
available in 1990s was a real challenge. In fact, the availability of
microarray technology for high-throughput genotyping with a
reasonable pricing gave birth to GWAS. Most of genotyping arrays
are manufactured by two companies, Illumina (San Diego, CA) and
Affymetrix (Santa Clara, CA). Illumina and Affymetrix use two
different platforms. The first generations of these arrays were
mainly designed for European descent populations. Therefore,
their coverage of the common variation was better in Caucasians
than in Asians or African descent populations [8].

When genome-wide association studies became a possibility, it was
soon clear that the sample sizes that are available at every center are
not large enough to address the small effects of common variants
for complex disorders and traits. Therefore, studies started to form
consortia to combine their data in meta-analyses. One major chal-
lenge, however, was the differences between platforms. This meant
that every study had a different set of SNPs and the overlapping
SNPs were limited. It was known, however, that once the LD
patterns are clear, the alleles for untyped variants could be estimated
based on genotyped variants. This process was named genotype
imputation since it estimates the missing variants that are not
genotyped by the genotyping array. In early days, HapMap was
the only reference panel that was available and the data imputed
based on this reference panel gave birth to the first wave of GWAS.
HapMap included nearly 2,500,000 SNPs and this set were the list
of SNDs that all studies imputed their data. A few years later, the
1000 Genomes project provided an alternative imputation platform
including a much larger set of SNPs as well as Indels [9]. Recently,
the Haplotype Reference Consortium (HRC) has collected a large
reference panel of human haplotypes by combining sequencing
data from various populations. The HRC reference panels include
a comprehensive bank of genetic variants and their haplotypes
which not only increases the number of variants that could be
imputed but also adds to the accuracy of the genotype imputation
(especially for low-frequency variants) [10].

Genotype imputation is based on information provided by
haplotypes. In the first step, the variants are linked together based
on the most common haplotypes (phasing). Second, the haplotypes
are compared to the reference panel. The haplotypes available at the
reference panel are normally denser and include more variants
compared to the genotyped data. The missing variants in the
study population are filled out using the data from the reference
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panel. In many instances, however, several haplotypes from the
reference panel matches the data set. Several solutions could be
applied in such instances. A simple method is to use the most likely
allele. Such data is called “best guess” imputed data and is expressed
as discrete numbers as 0, 1, or 2 (number of the coded alleles). An
alternative is to form the data as a combination of the number of
alleles and their probabilities, thus take the uncertainty into
account. This data is expressed on a continuous scale from 0 to
2 and called “dosage data.”

Every population should primarily be imputed using a refer-
ence panel with a similar ethnic background. However, a cosmo-
politan reference panel that includes haplotypes from various ethnic
groups may also improve the imputation quality since every indi-
vidual may carry small haplotypes from a far ancestor from a difter-
ent ethnic group.

5 Epidemiologic Design of GWAS

GWAS could be done in different epidemiologic designs depending
on the characteristics of the phenotype and data. Phenotypes could
either be quantitative (e.g., height) or categorical (often dichoto-
mous, e.g., diseased /healthy). Quantitative traits could also be
broken down into categorical variables (e.g., recoding BMI into
normal weight, overweight, and obese), however, this is not recom-
mended from a statistical perspective since information is lost due
to the categorization and statistical power is reduced. Quantitative
traits could be studied in a cross-sectional design. Given that
genetic data is constant over time. It is yet acceptable if DNA
samples were collected in a different round of the study than
phenotype measurement. Nevertheless, the potential effect of sur-
vival between the two rounds on the results, if relevant, should not
be overlooked. Binary outcomes are commonly studied in a case-
control design. Such designs are popular since they allow the inves-
tigator to collect a large number of diseased cases from disease
registries, hospital admissions, or large epidemiologic studies. A
relevant set of individuals are used as controls. Such designs, how-
ever, mostly rely on cross-sectional identification of the diseased
cases which are called “prevalent cases.” The downside of using
prevalent cases is that they do not represent all those who have
developed the disease in a population. For instance, prevalent cases
of coronary artery disease do not include cases of sudden cardiac
death or under represent those who have passed away shortly after
MI due to arrhythmias. If the survival after the disease is affected by
genetic factors, a GWAS on prevalent cases could be misleading. In
such an instance, the alleles that are associated with a better survival
after disease could be mistakenly picked up as risk allele for the
disease since they are enriched in prevalent cases. This is known as
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Neyman’s bias or incidence-prevalence bias [ 11]. To avoid this bias,
a prospective setting suits the study best to ensure that a represen-
tative set of cases are included in the study.

6 Statistical Analysis of GWAS

6.1 Genetic Model

6.2 Univariate
Analysis

One of the first assumptions that should be made for a GWAS is the
genetic inheritance model. Single variants could affect the pheno-
type or disease in an additive, recessive /dominant, or multiplicative
model. The additive model assumes that there is a linear uniform
increase in the risk by adding further copies of the risk allele. In
GWAS the additive model is most commonly used model since the
exact inheritance model is not known the variants and additive
model has reasonable power to detect variants that have additive
or dominant effect [12]. The power of this approach, however, is
limited if the inheritance model is recessive. Moreover, applying an
additive model does not allow identifying the underlying genetic
model. Some GWAS examine the best inheritance model fit of their
findings in a secondary analysis. Alternatively, some studies repeat
their analysis based on several inheritance models but adjust their
significance threshold for the number of tests.

The main analysis in GWAS is normally a regression model.
Depending on the nature of the phenotype, a linear, logistic, or
Cox regression model is applied. Quantitative phenotypes are com-
monly analyzed using linear regression models. The genetic var-
iants are the independent factors and the quantitative trait is the
dependent variable in the model. Normal distribution is not a strict
prerequisite for a linear regression model. However, transforma-
tions are used when the phenotype is severely skewed. Although
transformation will make the beta estimates difficult to interpret, it
helps in avoiding the results to be driven by outliers. Dichotomous
phenotypes such as diseases are analyzed either using logistic
regression models or if time to event data is provided, a Cox
regression model.

GWAS are mainly done primarily in an age and sex adjusted
model. Further adjustment, if applicable, could be done for study
site or population substructure. Given that genetic variants are
inherited randomly, confounding by environmental risk factors is
not a major issue. However, confounding by population substruc-
ture should be evaluated and adjusted. Every population may be
composed of people with different ancestral backgrounds and
therefore allele frequencies could vary across subpopulations.
When the phenotype or the risk of disease is different among
these subpopulations, the test statistics will be inflated across the
genome. To illustrate this inflation QQ-plots are used to plot the
distribution of the observed test statistics against the distribution of
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the test statistics under a null hypothesis. The deviation of the
observed test statistics could be measured and expressed as A. This
index is equal to 1, when there is no genomic inflation. Measures
above 1.05 are commonly unacceptable in HapMap imputed data
and are dealt with either by adjusting for principle components
representing population stratification in the regression model or
correcting the test statistics for the genomic inflation.

Although the findings in an age and sex adjusted model are not
likely to be driven by confounding bias, researchers are sometimes
interested in examining the effect of adjustment for certain factors
mainly, aiming to examine their potential mediatory role. It should
be noted that adjustment comes at the cost of higher degrees of
freedom and may negatively affect the statistical power.

Next to the single variant analysis, researchers are sometimes inter-
ested in studying the interaction effect between genetic variants or
between the variants and environmental risk factors. Such an analy-
sis for the whole genome is called genome-wide interaction analysis
or GWIS. Although valid interaction could be valuable and may
have clinical and public health implications, the very small interac-
tion effects have so far hampered the efforts to identify robust
interactions. Significant, validated, and robust interactions are
very scarce. Applying GWIS to study gene-gene interaction has an
extra challenge. Given that every GWAS includes hundreds of
thousands of genetic variants, the interaction between all variants
will include billions of tests which is computationally exhaustive
and statistically underpowered. To prune the list of SNPs some
investigators use single variant analysis results and pick up the
most significant variants, presumably with an arbitrary significance
threshold. However, this approach has the downside of overlook-
ing variants that are purely epistatic, i.¢., the effect is only shown in
the presence of a certain allele of the other interaction genetic
variant. Such associations are likely to be overlooked in single
variant analysis. Another approach is to limit the analysis to a
specific pathway or make a short list of the variants based on their
biological relevance.

In GWAS, commonly, every identified locus is represented by the
most significant genetic variant in a genomic region. It is assumed
that either the other genetic variants are showing a signal due to
their correlation with the sentinel variant or the sentinel SND is
capturing the largest amount of variance from the functional variant
in the region. In practice, however, there could be multiple causal
variants and the variants in the array could capture different frac-
tions of the variance of the causal variant. Therefore, multiple
variants could represent different associations that are independent
of each other. Identifying independent variants in a region could
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6.6 Multiple Testing

help to increase the proportion of variance that could be explained
by the genetic variants.

Conditional analysis is the conventional analytical method to
identify independent associations in one locus. To this end, the
analysis is repeated for all variants in that locus, adjusted for the
sentinel SNP. If the statistical power is large enough, further
genetic variants could be identified. This procedure should be
conducted over and over to identify further independent associa-
tions. Although this procedure is straightforward when it is done
for a single study, it would be administratively cumbersome and
time consuming when a large meta-analysis of summary statistics is
done. The researcher needs to contact the participating studies to
conduct the analysis, collect the data, run the meta-analysis, and
perform the cycle over and over to make sure that no further signals
are left. An alternative approach is introduced where summary-level
statistical data and a LD reference panel is used to identify multi-
variant loci. The method is implemented in GCTA statistical soft-
ware that is nowadays used for this purpose [13, 14].

Statistical tests are considered significant in classic epidemiology
when the p value is smaller than 0.05. This threshold, however,
should be adjusted when the hypothesis is examined using multiple
tests since the chances of false positive or spurious findings increase
by the number of tests. Therefore, adjustment for multiple testing
is very crucial to the validity of the findings. Although conservative
approaches toward multiple testing could ensure the validity of the
findings, an ultimate approach should not hamper the statistical
power of the study to identity genetic variants with small effects.

The most commonly applied method to deal with multiple
testing is the Bonferroni correction where the significance thresh-
old is divided by the number of tests. In GWAS, millions of variants
are tested to identify the one that is associated with the phenotype
ofinterest. In a GWAS where 500,000 variants were genotyped, the
significance threshold will be 0.05,/500,000 = 1 x 1077, The
HapMap imputed GWAS, however, are commonly using
5 x 10~® as the genome-wide significant threshold. This threshold
is justified based on an assumption that the contemporary arrays
include correlated variants and effectively include one million tests
[15]. Although GWAS based on extended reference panels such as
1000 Genomes should consider more stringent significance thresh-
old, many of them are yet using 5 x 105,

An alternative approach to take care of multiple testing is false
discovery rate (FDR). The FDR estimates the rate of type I error
and enables the investigator to set a threshold where the proportion
of false positive results are under a certain limit. In practice it is very
common to choose an FDR of 5%. This means that 5% of the
associations above this threshold are likely to be false positive
(null hypothesis wrongly rejected) [16].
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A third option is to perform permutation. To this end, the
phenotype of interest is shuffled hundreds or thousands of times
across the population to produce databases where the genotype and
phenotype are distributed similar to the original dataset but they
are not associated with each other. The analysis is repeated each
time and the test statistics represent an empirical distribution of the
test statistics under null hypothesis. The test statistic is compared to
the null distribution and significance is deduced. Permutation
could be done by several statistical packages including PLINK
which is popular in running GWAS [17].

GWAS are hypothesis free studies that examine the whole genome
in an agnostic approach. The function of GWAS could therefore be
considered hypothesis generating. To test this hypothesis, the asso-
ciation should be validated in an independent sample. This step is
known as replication. Although the value of the replication for
GWAS findings is widely appreciated, there are inconsistencies in
identifying the associations that deserve replication, defining a
proper replication study and criterion for refuting the finding
based on the replication results.

Any replication effort should be done under the same circum-
stances as in the discovery. The inheritance model, definition of the
phenotype, and covariate adjustment should be identical. One
major challenge, however, is to provide sufficient sample size.
Associations are commonly stronger in GWAS than replication
studies, a phenomenon known as the winner’s curse that compli-
cates the sample size estimation for replication studies [ 18]. Lack of
replication in a small population set is always difficult to interpret. It
is not possible to find out whether the association is absent due to
the false positive association in discovery panel or lack of power in
the replication set.

The replication study should also be done in an identical sample
that is independent of the discovery set. Once the finding is repli-
cated in a similar population, the association could be extended to
other ethnic groups by replicating it in those populations. Some
studies use the latter both as a mean for replication and generaliza-
tion. Although replicated associations could be considered repli-
cated and generalized, lack of association, for instance in a different
ethnic group, is difficult to interpret. It may be due to a difference
in LD pattern across populations or false positive finding in the
discovery panel.

7 Concluding Note

It is no exaggeration to say that GWAS have revolutionized the field
of human genetics. Thousands of genetic loci are introduced in
association with various complex traits and disorders in recent
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decade using GWAS. Many of the findings refer to pathways and
mechanisms that were not in the radar due to our limited biological
knowledge. The discoveries are expected to continue as larger
sample sizes and better imputation platforms are becoming avail-
able. At the same time, next generation sequencing seems to move
GWAS one step forward by providing a comprehensive DNA
sequence readout of the genome. Despite this advancement, geno-
typing technologies are likely to keep their role as a valid technique
for GWAS due to their cheaper prices, larger available sample sizes,
and simpler analytical methods. In fact, sequencing further indivi-
duals may improve current imputation reference panels and help
the microarray genotyping technology as a rival for sequencing
technologies by advancing the imputation quality of
low-frequency variants.
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