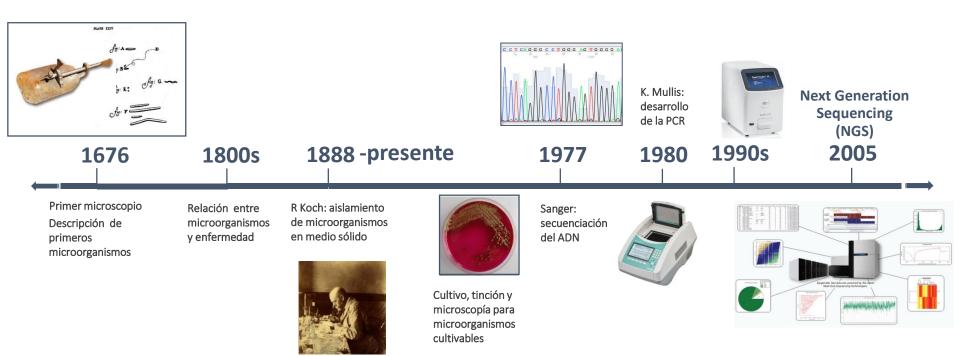
Biología Molecular Aplicada al Diagnóstico Médico Círculo Médico de Rosario


DIAGNOSTICO MOLECULAR EN ENFERMEDADES INFECCIOSAS: Aplicaciones de la biología molecular en Infectología. Nuevas metodologías en el diagnóstico microbiológico.

Dra. Mariela Sciara Laboratorio Cibic Rosario

2020

Biología Molecular en Microbiología. Historia.

- ✓ Área de diagnóstico de MAYOR DINAMISMO Y CRECIMIENTO
- ✓ Liderada por la AUTOMATIZACION
- ✓ ESTANDARIZACION de procesos y resultados
- REVOLUCION en el sistema de salud
- Lidera la INVESTIGACION BIOMEDICA

Preguntas al Laboratorio de Microbiología

Paciente tiene o no una infección

Cual es el agente causal

Con qué tratarlo

TRATAMIENTO EMPIRICO

- ✓ Resistencia antimicrobiana
- ✓ Efectos colaterales
- ✓ Gasto innecesario

Preguntas al Laboratorio de Microbiología

Paciente tiene o no una infección

Cual es el agente causal

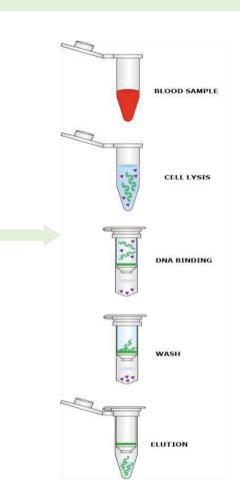
Con qué tratarlo

Técnicas Moleculares

TRATAMIENTO ADECUADO en menor tiempo

- Rápidas
- Alta sensibilidad y especificidad

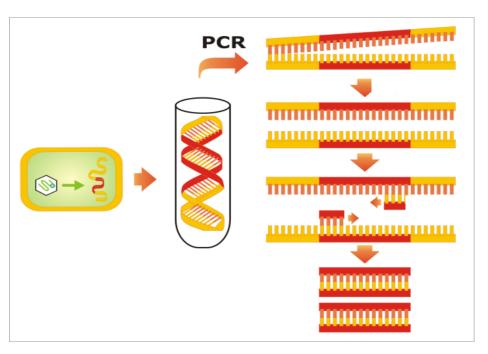
- Alto costo
- Validación y control de calidad

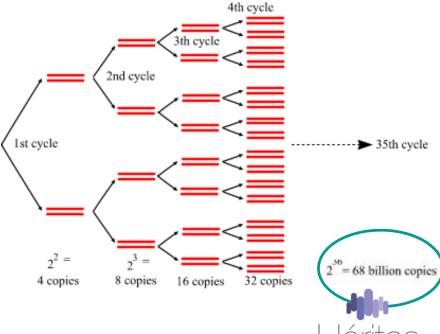

Biología Molecular en Microbiología. Aplicaciones.

- ✓ Identificación del agente causal de la infección (virus, bacteria, parásito, hongo)
 - Microorganismos no cultivables (HPV, HBV)
 - Microorganismos fastidiosos, crecimiento lento (M. tuberculosis, Legionella)
 - Microorganismos altamente infecciosos de cultivo de alto riesgo
 - Microorganismos presentes en muy baja cantidad en la muestra (humor vítreo, muestras forenses)
 - Monitoreo de carga viral (pronóstico y respuesta al tratamiento CMV, HIV, HBV, HCV)
- ✓ Genotipificación de agentes antigénicamente similares (tipos de HPV)
- ✓ Determinación de genes de resistencia (mecA, KPC) o suceptibilidad a drogas (resistencia a ART)
- ✓ Epidemiología molecular

OBTENCION DEL MATERIAL GENÉTICO (ADN Ó ARN) DE MUESTRAS BIOLÓGICAS

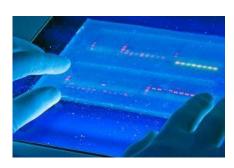
Proceso Manual o Automatizado

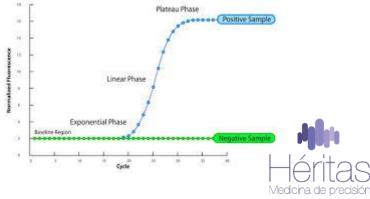



MagnaPure 96 (Roche)

AMPLIFICACION DEL TARGET DE ADN : Reacción en Cadena de la Polimerasa (PCR / RT-PCR)

✓ Amplificación exponencial


DETECCION DEL PRODUCTO AMPLIFICADO

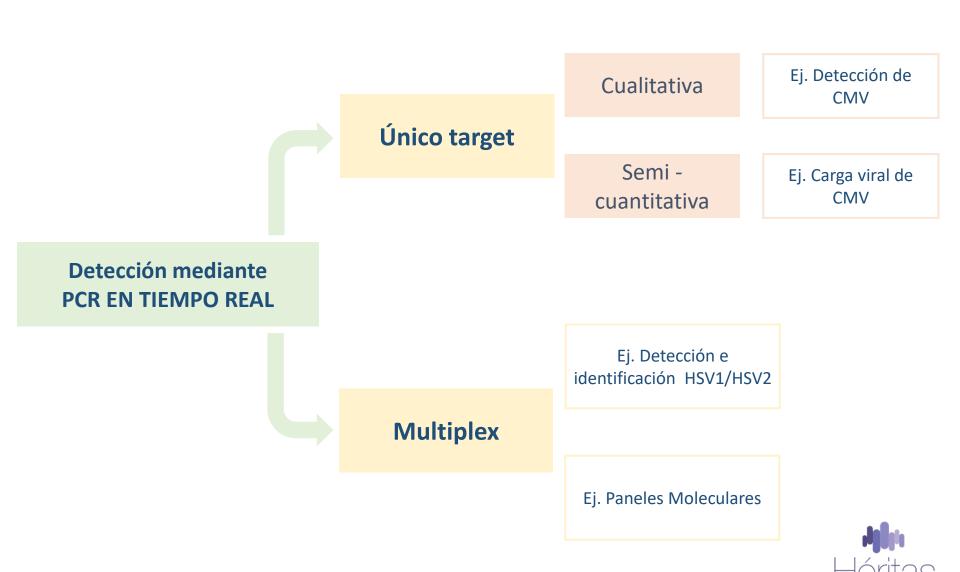

PCR PUNTO FINAL

Procesos de extracción y amplificación automatizados. Ejemplos.

COBAS 4800

- Cargas virales de HCV, HBV y HIV .
- Detección cualitativa de HPV, C. trachomatis y N. gonorroheae

FILMARRAY


Detección de más de 20 patógenos simultáneamente.

COBAS S201

Testeo de ácidos nucleicos de HCV, HBV y HIV en donantes de sangre.

Métodos diagnósticos rápidos:

Identificación mediante pruebas guiadas por los síntomas.

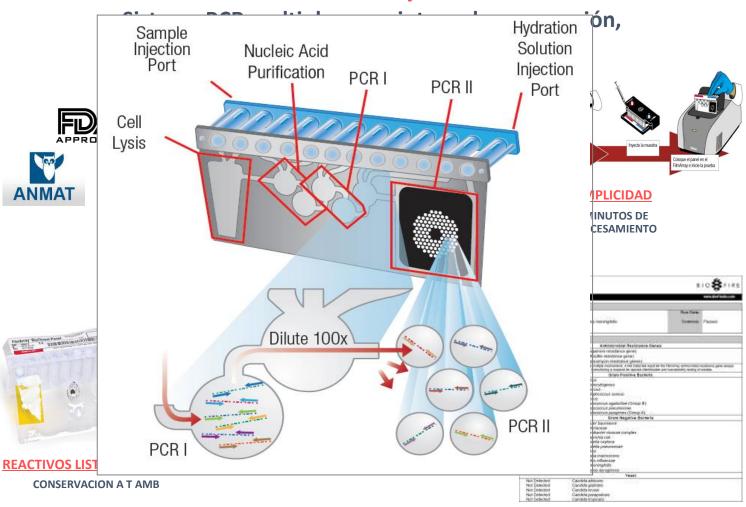
URGENCIAS MICROBIOLOGICAS Problema clínico **SEPSIS** Respiratorias - Gastrointestinales Meningitis UCI Guardia **Utilidad** Emergentólogos Terapistas Internación criteriosa Infectólogos DECISION CLINICA basada en información **Necesidad** precisa, rápida e integral √ Ajuste de terapia empírica a tiempo √ Resolver casos de urgencia ✓ Reducción de tiempos de internación **Beneficios** ✓ Disminución de resistencia antibiótica

✓ Menor morbi-mortalidad

✓ Disminución de estudios asociados.

Métodos diagnósticos rápidos: PCRs multiplex-Paneles

⊕ BD



FilmArray®

FilmArray: Diagnóstico Sindrómico

- Detección simultánea de bacterias, virus, levaduras, parásitos y / o genes resistentes a los antimicrobianos.
- Paneles integrales para detección de grupos de patógenos asociados a algunos de los desafíos de salud más acuciantes de la actualidad.

Panel Respiratorio

20 targets

- 3 bacterias
- 17 virus

Panel de Sepsis

27 targets

- 19 bacterias
- 5 levaduras
- 3 genes resistencia

Panel Gastrointestinal

22 targets

- 13 bacterias
- 5 virus
- 4 parásitos

Panel de Meningitis

13 targets

- 6 bacterias
- 7 virus
- 1 hongo

Panel Respirat. Inferior

34 targets

- 18 bacterias
- 9 virus
- 7 genes resistencia

URGENCIAS MICROBIOLOGICAS

GASTROENTERITIS INFECCIOSA

INFECCIONES RESPIRATORIAS AGUDAS

INFECCIONES TRACTO RESPIRATORIO INFERIOR

MENINGITIS / ENCEFALITIS

Gastroenteritis infecciosa

SINTOMAS

PATOGENOS

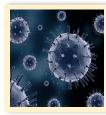
- Mayoritariamente autolimitadas
- Sin embargo, existen cuadros severas, con alta morbimortalidad, sobre todo en pacientes inmunocomprometidos o edad avanzada.
- Recomendaciones de la ACG*:
 - **Realizar estudios de diagnóstico** en casos de disentería, enfermedad moderada a severa y síntomas por más de 7 días.
 - Si están disponibles se recomienda el uso de métodos independientes de cultivo avalados por la FDA al menos en paralelo a los métodos tradicionales.

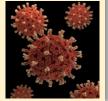
Gastroenteritis infecciosa

SINTOMAS

PATOGENOS

DIAGNOSTICO





- ✓ Examen directo
- √ Coprocultivo
- ✓ Examen parasitológico
- ✓ Detección de antígenos
- ✓ Búsqueda específica de patógenos
- **✓ PCRs**

Gastroenteritis infecciosa

Muestra: Materia fecal

Panel Gastrointestinal FilmArray

Bacterias

Campylobacter

Clostridium difficile (toxin A/B)

Plesiomonas shigelloides

Salmonella

Vibrio / Vibrio cholerae

Yersinia enterocolitica

E. coli / Shigella diarreagénicas

E. coli Enteroagregativa

E. coli Enteropatogénica

E. coli Enterotoxigénica

E. coli pdtora toxina tipo Shiga

E. coli 0157

Shigella/E. coli Enteroinvasiva

Parásitos

Cryptosporidium

Cyclospora cayetanensis

Entamoeba histolytica

Giardia lamblia

Virus

Adenovirus F 40/41

Astrovirus

Norovirus GI/GII

Rotavirus A

Sapovirus

SENSIBILIDAD ESPECIFICIDAD
98,5%
99,3%

FilmArray Panel GI

Diagn Microbiol Infect Disease 2014

Multiplex gastrointestinal pathogen panels: implications for infection control [☆]

Kenneth H. Rand ^{a,*}, Elizabeth E. Tremblay ^d, Mari Hoidal ^b, Lori B. Fisher ^c, Katrina R. Grau ^e, Stephanie M. Karst ^e

Clinical Microb Infect 2015

Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis

A. Spina¹, K. G. Kerr², M. Cormican³, F. Barbut⁴, A. Eigentler⁵, L. Zerva⁶, P. Tassios⁶, G. A. Popescu⁷, A. Rafila⁷, E. Eerola⁸, J. Batista⁹, M. Maass¹⁰, R. Aschbacher¹¹, K. E. P. Olsen¹² and F. Allerberger¹

J Clinical Microbiol 2015

Multicenter Evaluation of the BioFire FilmArray Gastrointestinal Panel for Etiologic Diagnosis of Infectious Gastroenteritis

Sarah N. Buss, *Amy Leber, Kimberle Chapin, Paul D. Fey, Matthew J. Bankowski, Matthew K. Jones, Margarita Rogatcheva, Kristen J. Kanack, Kevin M. Bourzac Kevi

FilmArray Panel GI

Diagn Microbiol Infect Disease 2014

Multiplex gastrointestinal pathogen panels: implications for infection control[☆]

- El Panel GI detectó mayor cantidad de patógenos que los métodos tradicionales, en muchísimo menos tiempo y menos costoso que si se realizan todas las pruebas por separado para obtener el mismo resultado.
- Se detectaron co-infecciones, no detectadas por los métodos convencionales.
- El Panel GI llevó a un aislamiento más racional del paciente, lo que generaría a largo plazo una menor transmisión nosocomial.

Panel for Etiologic Diagnosis of Infectious Gastroenteritis

Sarah N. Buss, *Amy Leber, Kimberle Chapin, Paul D. Fey, Matthew J. Bankowski, Matthew K. Jones, Margarita Rogatcheva, Kristen J. Kanack, Kevin M. Bourzacf

Aplicación del Panel Gastrointestinal FilmArray en el diagnóstico de diarrea en pacientes pediátricos.

Mariela Sciara¹, Dr. P. Candarle², Dra. N. Giordani², Dra. S. Sciaccaluga². ¹Laboratorio Cibic. ²Sanatorio de Niños

• Pacientes < 6 años que lleguen a la guardia del Sanatorio de Niños presentando: diarrea con más de 7 días de evolución, diarrea relacionada con viajes, diarrea con signos de gravedad como fiebre, disentería, dolor abdominal, deshidratación, pacientes inmunocomprometidos.

Métodos de rutina

- **✓ EXAMEN DIRECTO**
- ✓ COPROCULTIVO
- ✓ IFI Rotavirus Ag
 Adenovirus Ag
 Norovirus Ag
- ✓ Búsqueda de Campylobacter
- ✓ Búsqueda de Yersinia
- ✓ PCR *E. coli* O157 stx1/2
- ✓ PCR Toxina de *C. difficile*

Panel Gastrointestinal FilmArray

Bacterias

Campylobacter

Clostridium difficile (toxin A/B)

Plesiomonas shigelloides

Salmonella

Vibrio / Vibrio cholerae

Yersinia enterocolitica

E. coli / Shigella diarreagénicas

E. coli Enteroagregativa

E. coli Enteropatogénica

E. coli Enterotoxigénica

E. coli pdtora toxina tipo Shiga

E. coli 0157

Shigella/E. coli Enteroinvasiva

Parásitos

Cryptosporidium

Cyclospora cayetanensis

Entamoeba histolytica

Giardia lamblia

Virus

Adenovirus F 40/41

Astrovirus

Norovirus GI/GII

Rotavirus A

Sapovirus

Aplicación del Panel Gastrointestinal FilmArray en el diagnóstico de diarrea en pacientes pediátricos.

Mariela Sciara¹, Dr. P. Candarle², Dra. N. Giordani², Dra. S. Sciaccaluga². ¹Laboratorio Cibic. ²Sanatorio de Niños

Métodos de rutina

✓ *E. coli* O157 STX2 (n=2)

Resultados en 48hs promedio

Muestra: Materia fecal

Panel Gastrointestinal FilmArray

- ✓ E. coli O157 STX2 (n=2)
- ✓ C. difficile Tx A/B (n=1)
- ✓ E. coli enteropatógena (n=1)
- √ Salmonella (n-1)
- MAYOR NUMERO DE PATOGENOS DETECTADOS
- DISMINUCION SIGNIFICATIVA EN EL TIEMPO de obtención del resultado
- UTILIDAD EN DIAGNOSTICOS DIFERENCIALES (evitar internación o endoscopias).

Infección Respiratoria Aguda

SINTOMAS

PATOGENOS

- En Argentina, las IRA constituyen la 4ta causa de muerte por enfermedad.
- Principal causa de consulta y hospitalización en niños < 5 años, adultos >65 años y pacientes inmunocomprometidos.
 80% de las infecciones respiratorias son virales, pero el 60%
 - se tratan con antibióticos.

Infección Respiratoria Aguda

DIAGNOSTICO SINTOMAS PATOGENOS ✓ Cultivo ✓ Tests rápidos ✓ IFI **✓** PCRs

Infección Respiratoria Aguda

Muestra: Hisopado nasofaríngeo

Panel Resp v 2.1

+ SARS-Cov2

Panel Respiratorio FilmArray 2

Virus

Adenovirus
Coronavirus 229E
Coronavirus HKU1
Coronavirus OC43
Coronavirus NL63
Metapneumovirus
Rhinovirus/ Enterovirus
Influenza A
Influenza A/H1
Influenza A/H1-2009
Influenza A/H3

Influenza B

Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4 VSR

Bacterias

Bordetella pertussis Bordetella parapertussis Chlamydophila pneumoniae Mycoplasma pneumoniae

SENSIBILIDAD ESPECIFICIDAD

95%

99%

FilmArray Panel Respiratorio

J Clinical Microbology 2015

Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients

Urania Rappo, a* Audrey N. Schuetz, b,c* Stephen G. Jenkins, b,c David P. Calfee, Thomas J. Walsh, b,d Martin T. Wells, James P. Hollenberg, Marshall J. Glesby

J Pediatrics 2016

Impact of Multiplex Polymerase Chain Reaction Testing for Respiratory Pathogens on Healthcare Resource Utilization for Pediatric Inpatients

Anupama Subramony, MD, MBA^{1,*}, Philip Zachariah, MD, MS^{2,3,*}, Ariella Krones, MD⁴, Susan Whittier, PhD^{2,3}, and Lisa Saiman, MD, MPH^{2,3}

FilmArray Panel Respiratorio

J Clinical Microbology 2015

- Disminución significativa en la duración de la terapia antibiótica.
- Reducción de la cantidad de placas radiográficas durante los primeros dos días de hospitalización.
- Aumento de la cantidad de pacientes en aislamiento durante los primeros dos días de hospitalización.
- Disminución del tiempo de obtención de resultados (2-5 d a 3 hs)
- Disminución del tiempo de internación.

Panel Respiratorio FilmArray: Aplicación en niños con dificultad respiratoria severa.

Mariela Sciara¹, Dra. A. Ugolini², Dra. N. Zancocchia², Dr. L. Flynn². ¹Laboratorio Cibic. ²Sanatorio de Niños

• 12 pacientes menores de 24 meses internados en el Sanatorio de Niños por dificultad respiratoria severa y bronquiolitis y/o catarro de vías aéreas superiores.

Rhinovirus/ Enterovirus

Influenza A/H1-2009

Influenza A

Influenza B

Influenza A/H1

Influenza A/H3

Métodos de rutina

√ IFI

VSR

Influenza A Influenza B Parainfluenza 2 Parainfluenza 3 Adenovirus

Panel Respiratorio FilmArray

Virus

Parainfluenza 1 Adenovirus Parainfluenza 2 Coronavirus 229E Parainfluenza 3 Coronavirus HKU1 Parainfluenza 4 Coronavirus OC43 **VSR** Coronavirus NL63 Metapneumovirus

Bacterias

Bordetella pertussis Chlamydophila pneumoniae Mycoplasma pneumoniae

PCR Bordetella pertussis

SENSIBILIDAD ESPECIFICIDAD

Panel Respiratorio FilmArray: Aplicación en niños con dificultad respiratoria severa.

Mariela Sciara¹, Dra. A. Ugolini², Dra. N. Zancocchia², Dr. L. Flynn². ¹Laboratorio Cibic. ²Sanatorio de Niños

Métodos de rutina

√ VSR (n=1)

Resultados en 24hs promedio

Muestra: Hisopado nasofaríngeo

Panel Respiratorio FilmArray

- ✓ Rhinovirus / Enterovirus (n=4)
- ✓ VSR (n=3)
- ✓ Parainfluenza 3 (n=2)
- ✓ Rhino/EV + Parainf 3 (n=1)
- ✓ Rhino/EV + Infl A/H3 + Parainf 3 (n=1)
- ✓ Adenovirus + Metapneumovirus (n=1)

Resultados en 3hs promedio

FilmArray Panel Pneumonía

Muestra: Esputo / Asp traqueal o BAL/miniBAL

Virus

Adenovirus
Coronavirus
Metapneumovirus
Rhinovirus/ Enterovirus
Influenza A
Influenza B
Parainfluenza
Virus Sincicial Respiratorio

Genes de Resistencia

Meticilino R: mecA/C y MREJ Carbapenemasas: KPC, NDM, Oxa48 like, VIM, IMP ESBL: CTX-M

Bacterias atípicas (CUALITATIVA)

Chlamydia pneumoniae Legionella pneumophila Mycoplasma pneumoniae

Bacterias (SEMICUANTITATIVA)

Escherichia coli Haemophilus influenzae Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae group Moraxella catarrhalis *Proteus* spp. Pseudomonas aeruginosa Serratia marcescens Staphylococcus aureus Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes

SENSIBILIDAD ESPECIFICIDAD

BAL: 96,2% BAL: 96,3% ESP: 96,3% ESP: 97,2%

Meningitis / Encefalitis

- Infecciones del Sistema Nervioso Central con significativa morbilidad, mortalidad y altos costos en salud.
- Amplio diagnóstico diferencial
- Signos y síntomas clínicos no son organismo-específicos.
- Métodos convencionales (Gram, cultivos, detección de antígenos): alto tiempo de obtención de resultados, necesidad de contar con volumen de muestra significativo.

Meningitis / Encefalitis

Muestra: Líquido Cefalorraquídeo

Panel Meningitis FilmArray

Bacteria:

E. coli K1

H. influenzae

L. monocytogenes

N. meningitidis (encapsulada)

S. agalactiae

S. pneumoniae

Hongos:

Cryptococcus neoformans/gattii

•NOTA: EBV No está incluído en el Panel

Virus:

Cytomegalovirus (CMV)

Enterovirus (EV)

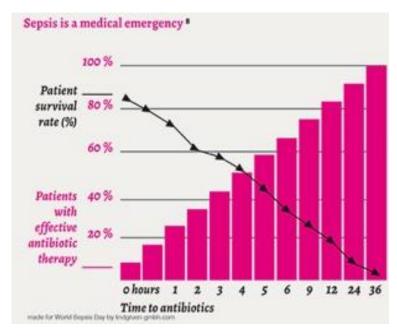
Herpes simplex tipo 1 (HSV-1)

Herpes simplex tipo 2 (HSV-2)

Human Herpesvirus 6 (HHV-6)

Human Parechovirus (HPeV)

Varicella Zoster virus (VZV)


Panel Meningitis FilmArray

- TERAPIA DIRIGIDA (sensible + rápido TAT): menos mortalidad morbilidad en meningitis bacteriana.
- PERMITE DESESCALAR TERAPIAS ANTIBIOTICAS EMPIRICAS.
- MINIMO VOLUMEN DE LCR (limitante para la cantidad de pruebas tradicionales)
- REDUCE MULTIPLES PRUEBAS- ahorro de tiempo y costos
- REDUCE COSTOS POR DIAGNOSTICO RAPIDO
- REDUCE TIEMPO DE INTERNACION SI SE IDENTIFAC MENINGITIS VIRAL
- OPTIMIZA AISLAMIENTO DEL PACIENTE

MANEJO DE SEPSIS

- En Argentina, mueren 10736 pacientes por septicemia al año (Min. Salud 2013) – 29 muertes/día.
- Tasa de mortalidad entre 10-38%.
- Cada hora decrece un 7,6% la sobrevida. En una sepsis cada minuto cuenta.
- 1/3 de pacientes sépticos graves, reciben una terapia antibiótica inapropiada.
- El tratamiento empírico inadecuado lleva a mayor morbi-mortalidad e incrementa la resistencia a los antibióticos.

Kumar A et al (2006) Crit Care Med, 34: 1589-1596, 2006.

La identificación rápida de patógenos y mecanismos de resistencia mejora el tiempo en administrar la terapia correcta.

Sepsis

Muestra: Hemocultivo positivo

Panel de Sepsis FilmArray

Bacterias Gram -

Acinetobacter baumannii

Haemophilus influenzae

Neisseria meningitidis

Pseudomonas aeruginosa

Enterobacteriaceae

Enterobacter cloacae complex

Escherichia coli

Klebsiella oxytoca

Klebsiella pneumoniae

Proteus

Serratia marcescens

Bacterias Gram +

Enterococcus

L. monocytogenes

Staphylococcus

S. aureus

Streptococcus

S. agalactiae

S. pyogenes

S. pneumoniae

Levaduras

Candida albicans Candida glabrata Candida krusei Candida parapsilosis

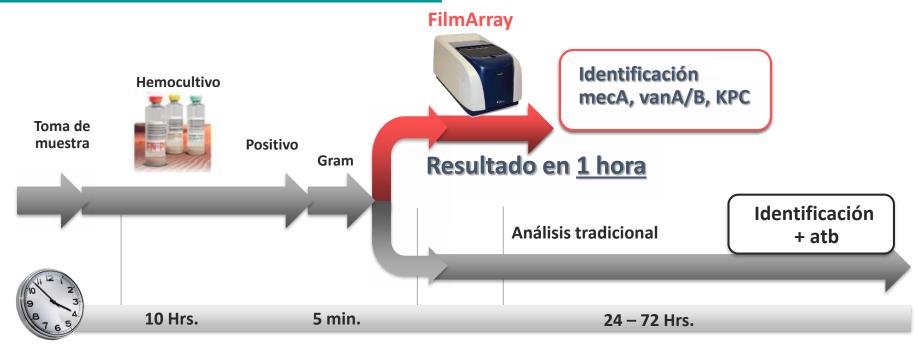
Resistencia a

Candida tropicalis

Antibioticos:

mecA van A/B KPC

SENSIBILIDAD ESPECIFICIDAD


97.5%

99,8%

IDENTIFICA 9 DE CADA 10 HEMOCULTIVOS POSITIVOS

FilmArray Panel de Sepsis

✓TRATAMIENTO DIRIGIDO: Mejor elección del antibiótico, sin efectos secundarios no deseados ni incremento de costos.

✓ MENOR TIEMPO EN UCI Y MENOR MORTALIDAD: En infecciones por *S. aureus mecA* permitió el descalamiento de terapia empírica en 44hs vs 67 hs, disminución de mortalidad (10% vs 23%) y estancia en UCI (3 vs 7 días).

✓ REDUCCION DE INFECCION NOSOCOMIAL: Reconocimiento temprano de microorganismos. Optimización de la terapia basado en programa de ATS.

Utilización del Panel de Sepsis FilmArray en shock séptico.

Caso 1

- Hombre de 17 años que consulta a la guardia por diarrea abundante, vómitos y fiebre, sin antecedentes. Inestable hemodinámicamente, requiere asistencia respiratoria mecánica inmediata.
- Ingresa a UTI con deterioro renal, digestivo y neurológico con shock séptico.
- Hemocultivo en sistema automatizado Bact/Alert® 3D: 2/2 positivos a las 8,5 hs.
- Se realiza FilmArray® BCID Panel detectándose *S. pyogenes* una hora después, rotando a tratamiento específico a las 10 hs de tomada la muestra.

Caso 2

- Mujer de 13 años que consulta a la guardia por fiebre, cefalea, eritema y edema de ojo izquierdo, sin antecedentes.
- El cuadro evoluciona en forma agresiva, con sensorio alternante, ingresando a la UCIP el mismo día por shock séptico y celulitis necrotizante orbitaria y periorbitaria.
- Hemocultivo en sistema automatizado Bact/Alert® 3D: 1/2 positivo a las 3,6 hs.
- Se realiza FilmArray® BCID Panel detectándose *S. pyogenes* una hora después, rotando a tratamiento específico a las 5 hs de tomada la muestra.

Utilidad del FilmArray Panel de Sepsis

- En hemocultivos positivos de pacientes en UCI o críticamente enfermos con signos de sepsis graves.
- Si se observa Gram con bacilos negativos, levaduras o cultivo polimicrobiano (con apoyo de información clínica).
- En hemocultivos de pacientes inmunocomprometidos, neutropénicos febriles, inestabilidad hemodinámica.
- En casos puntuales de estudios epidemiológicos definido por el comité de infecciones (brote institucional)

FilmArray. Diagnóstico Sindrómico

Diagnóstico preciso, rápido e integral:

- -Adecuación de la terapia empírica a tiempo
- -Reducción de tiempos de internación
- -Aislamiento rápido de los pacientes
- -Disminución de estudios asociados

- Resultado debe ser <u>utilizado en conjunto con otros datos de laboratorio,</u> <u>clínicos, y epidemiológicos.</u>
- Resultados positivos no descartan co-infección
- Resultado negativo puede deberse a agentes no detectados por el panel.
- El <u>cultivo es necesario</u> para la recuperación bacteriana, tipificación y pruebas de sensibilidad.

Desafíos de las nuevas herramientas diagnósticas.

Alto costo

Infraestructura

Herramientas Bioinformáticas Correcta interpretación de resultados

Formar equipos multidisciplinarios

- **IMPLEMENTAR**
- ESTANDARIZAR
- INTERPRETAR

Muchas gracias!

msciara@cibic.com.ar

