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Clustered regularly-interspaced short palindromic repeat (CRISPR) sequences

cooperate with CRISPR-associated (Cas) proteins to form the basis of CRISPR-

Cas adaptive immune systems in prokaryotes. For more than 20 years, these

systems were of interest only to specialists, mainly molecular microbiologists,

who tried to understand the properties of this unique defense mechanism. In

2012, the potential of CRISPR-Cas systems was uncovered and these were

presented as genome-editing tools with an outstanding capacity to trigger

targeted genetic modifications that can be applied to virtually any organism.

Shortly thereafter, in early 2013, these tools were shown to efficiently drive

specific modification of mammalian genomes. This review attempts to summa-

rize, in a comprehensive manner, the key events and milestones that brought

CRISPR-Cas technology from prokaryotes to mammals.

Limitations in Mammalian Genome Engineering Are Usually Overcome with

Tools Imported from Prokaryotes

When researchers encounter difficulties in modifying the mammalian genome, prokaryotes very

often come to the rescue, providing innovative solutions derived directly from nature. Useful

reporter genes (such as lacZ) to identify cell types where a gene is expressed [1], robust inducible

gene expression (the tetracycline system) [2] and efficient conditional mutagenesis (the cre/loxP

system) [3] illustrate how bacteria have often been instrumental in triggering exceptional

qualitative advances in our ability to modify the eukaryote genome at will, particularly that of

vertebrates and notably, that of mammals.

For more than 30 years, mouse developmental and molecular biologists benefited from

random and targeted animal transgenesis techniques [4], from simple methods based on the

direct microinjection of DNA constructs into the pronucleus of fertilized eggs, to sophisti-

cated, specific genetic modifications implemented with the help of embryonic stem (ES)

cells (see Glossary) and homologous recombination approaches. These and other com-

plementary methods were applied to the genome modification of livestock, fish, and other

animal species [5].

For decades, most genome modifications in animals were based on stochastic approaches,

whereby the transgene would integrate randomly into the host genome. This often led to

chromosomal position effects [6] that resulted in variegation or in unexpected, variable, ectopic,

and ultimately, suboptimal transgene expression patterns [7]. Although homologous gene

recombination in ES cells provided a suitable solution for undesired random modification of

genomes [8], the use of ES cells was limited for many years to mice [9]. It was not until the

somatic cell nuclear transfer (SCNT) approach was developed that it became possible to alter
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endogenous loci directly in nonrodent species [10]. Both the ES cell and the SCNT approaches

nonetheless required laborious, lengthy protocols available only to a handful of research centers

and reference laboratories. The need was therefore obvious for better, simpler, more efficient

tools to target modification of animal genomes.

The introduction of genome-editing nucleases (at first, the zinc-finger nucleases, ZFN [11],

followed by transcription activator-like effector nucleases, TALENs [12], and most recently,

clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins, Cas

[13]; see Figure 1) provided an operative solution for targeting any desired genetic modification,

for specifically altering genes at will, which was welcomed and rapidly embraced by the scientific

community (Box 1).

Initial CRISPR Discoveries

Why then is CRISPR-Cas the most recent and best example of tools imported from prokaryotes

for application and benefit to genetic modifications in eukaryotes? What is the origin of the

CRISPR-Cas technology? The following paragraphs outline the key discoveries and advances in

prokaryote research since the early 1990s that permitted the launch of this disruptive technique

in 2012, that is, the unexpected application of a basic research study that resulted in one of the

most extraordinary breakthroughs in biotechnology (Table 1 gives a summary of milestones in

CRISPR history).

The DNA repeats with dyad symmetry that would later become known as CRISPR were first

reported in 1987 by Atsuo Nakata's group in Japan [14]. These regularly spaced motifs were

clustered next to the iap gene, which encodes an aminopeptidase in Escherichia coli K12. A

second array was found in the same genome 2 years later, and hybridization assays

suggested the presence of similar sequences in very close relatives (Shigella and Salmonella

species) [15]. In 1991, interspaced direct repeats (DR) were identified in strains of an

evolutionarily distant group of bacteria, the Mycobacterium tuberculosis complex (MTBC)

[16]. The DR-intervening sequences, known as spacers, were found to differ among isolates,

and hence were harnessed for strain typing [17,18]. The use of DR loci as genetic markers

for strain differentiation in MTBC expanded rapidly during the 1990s, and they are still used

for this purpose today [19].

Glossary

Cas9: multidomain protein of Type II

systems that catalyzes DSBs in

target DNA guided by crRNA and in

association with tracrRNA.

Clustered regularly-interspaced

short palindromic repeats

(CRISPR): repetitive DNA sequences

present in genetic elements of

bacteria and archaea, separated by

unique spacers of similar length.

CRISPR-associated (Cas): proteins

encoded by the cas genes which are

usually located in close proximity to

CRISPR loci, altogether forming a

CRISPR-Cas system. The Cas

proteins are involved in all stages of

the CRISPR-Cas mechanism.

CRISPR RNA (crRNA): noncoding

RNA made of a single spacer

sequence and repeat fragments,

generated by processing of a pre-

crRNA. The crRNAs direct Cas

proteins involved in interference to

spacer-complementary nucleic acids.

Double-strand break (DSB):

disruption of the physical continuity of

a DNA molecule in which both

strands in the double helix are cut,

usually by a DNA endonuclease.

Embryonic stem (ES) cells:

mammalian pluripotent cells

established in culture and derived

from the inner cell mass of

blastocysts.

FokI: type II restriction enzyme

derived from Flavobacterium

okeanokoites whose DNA

endonuclease domain has been

engineered into ZFN and TALEN

genome-editing nucleases.

Homology-directed repair (HDR):

one of the two endogenous cellular

mechanisms for fixing a DSB through

the combined use of an additional

DNA molecule, to be used as a

template, with homologies to flanking

sequences, and the endogenous

repair machinery.

Induced pluripotent cell (iPS):

mammalian pluripotent cells derived

in culture from somatic cells through

the activation of a limited number of

reprogramming factors.

Mycobacterium tuberculosis

complex (MTBC): genetically related

group of Mycobacterium species that

cause tuberculosis.

Nonhomologous end-joining

(NHEJ): together with HDR, the

alternative endogenous cellular

mechanism for repairing a DSB in the

absence of a DNA template, usually

resulting in small insertions and

Box 1. Rationale of Genome-Editing Nucleases

The rationale is conceptually identical for all three types of genome-editing nucleases [63]. The idea is to generate a

double-strand break (DSB) in the genome produced by a DNA endonuclease enzyme (FokI in the case of ZFN and

TALEN, mainly Cas9 for CRISPR-Cas tools). The selected DNA sequence is targeted via the specific DNA-binding

capacities of engineered zinc-finger or TALE protein domains, or by CRISPR-derived complementary small single guide

RNAs (sgRNAs) or through CRISPR RNAs (crRNAs)-trans-activating crRNA (tracrRNA) duplex. The DSB is then repaired

by endogenous DNA repair mechanisms, through the default non-homologous end-joining (NHEJ) route, or through the

homology-directed repair (HDR) pathway if additional DNA molecules that match sequences in the vicinity of the DSB are

available. Repair of the DSB leads to the introduction of small insertions or deletions (INDEL) or replacement of the target

sequence by the exogenous DNA template; this depends on whether the NHEJ or the HDR pathway is triggered, and

often causes gene disruption or gene editing, respectively [63]. Generally, irrespective of whether NHEJ or HDR pathways

are triggered, the global term of gene (or genome) editing is applied to describe the endogenous repair mechanisms

taking place immediately after the DSB.

Methods that use genome-editing nucleases evolved very quickly. The first report of an animal (a rat) whose genome was

modified using ZFN was published in 2009 [77]. Two years later, TALENs were first applied for target genome

modification [78]. After only two more years, in 2013, CRISPR-Cas9 tools were shown to mediate efficient targeted

genome modification in mammalian cells [52,53], zebrafish [59] and mice [59,60]. This led to the thousands of

publications that have accumulated since then using a CRISPR-Cas design, largely surpassing the number of studies

using the previous ZFN and TALEN approaches. The closed architecture of ZFN, and the more affordable but still very

laborious generation of TALENs, were rapidly replaced by the simplicity and ease of use of CRISPR-Cas9 tools [79],

which explains the widespread adoption of this last approach, which is now used universally.
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deletions (INDELs). NHEJ can also

occur in the presence of homologous

DNA templates.

Precursor-crRNA (pre-crRNA):

RNA encoded by a CRISPR locus,

usually encompassing the whole

repeat array.

Protospacer adjacent motif

(PAM): a two- to five-nucleotide

conserved motif, occurring next to

CRISPR targets of most CRISPR-Cas

systems, which is necessary for

efficient target cleavage.

Short regularly spaced repeats

(SRSR): original denomination of the

family of DNA repeats afterwards

renamed as CRISPR.

Single-guide RNA (sgRNA):

synthetic RNA molecule composed of

crRNA and tracrRNA sequences

merged through a linker element.

Somatic cell nuclear transfer

(SCNT) approach: sophisticated

reproduction procedure to generate

animals from enucleated embryos

reconstructed with nuclei from

somatic cells.

Spacer: CRISPR-intervening

sequence, typically of exogenous

origin.

Trans-activating crRNA

(tracrRNA): noncoding RNA of Class

II CRISPR-Cas systems required for

both the generation of crRNAs and

target cleavage.

Transcription activator-like

effector nuclease (TALEN):

chimeric protein made of a designed

transcription activator-like core

domain, with specific DNA-binding

capacity, fused with the DNA

endonuclease domain from the FokI

restriction enzyme.

Zinc-finger nuclease (ZFN):

chimeric protein made of several

designed and sequence-specific zinc-

finger DNA-binding domains fused

with the DNA endonuclease domain

from the FokI restriction enzyme.

Following these first descriptions of CRISPR in Gram-negative bacteria (E. coli) [14,15] and

Gram-positive bacteria (MTBC) [16–18], the research group of Francisco Rodríguez-Valera in

Spain discovered repeat-spacer clusters in archaea [20]. They detected long stretches of these

elements in chromosomal and in resident plasmid regions of strains pertaining to some Haloferax

and Haloarcula species [21]. Whereas bacterial systems were not analyzed until the next

decade, transcription from repeat loci [20] and the first studies to define a biological role for

CRISPR [21] were reported in archaea, in 1993 and 1995, respectively, which described an

incompatibility between the chromosome and recombinant multicopy plasmids with identical

repeat arrays [21].

From 1996 to 1999, similar repeated elements were found in other archaea and bacteria, and in

2000 these and additional sequences in DNA databases were collected to designate a newly

identified type of prokaryotic short repeats that was termed short regularly spaced repeats

(SRSR) [22]. The then-rudimentary bioinformatic analyses applied to these SRSR elements

indicated that they were partially palindromic and occurred in clusters, regularly interspersed by

unique spacer sequences of constant length, similar to that of the repeats. This very first

compilation of a large number of such SRSR in unrelated microorganisms, and the peculiarities

Table 1. Milestones, Discoveries, and Achievements in the History of CRISPR-Cas Technology (1987–2013)

Year Milestone Refs

1987 First report of CRISPR arrays in Gram-negative bacteria [14]

1991 First report of CRISPR arrays in Gram-positive bacteria [16]

1993 First report of CRISPR arrays in archaea [20]

1995 First insight on CRISPR functionality [21]

2000 Large number of regularly spaced repeats are found in bacteria and archaea, suggesting a

relevant function

[22]

2002 Regularly spaced repeats of bacteria and archaea are termed with the acronym CRISPR [23]

2002 First identification of CRISPR-associated (cas) genes [23]

2005 First identification of CRISPR spacers as homologous to sequences in bacteriophages and

plasmids

[24–26]

2005 First suggestion that CRISPR-Cas systems would represent a bacterial defense mechanism [24]

2007 First experimental demonstration that CRISPR-Cas systems are involved in acquired

immunity against bacteriophages

[31]

2008 First experimental demonstration that CRISPR-Cas systems interfere with plasmid horizontal

transfer, by targeting DNA

[34]

2008 First description of the role of CRISPR small RNAs (crRNA) as the guides for CRISPR

interference

[33]

2008 It is anticipated that conserved sequences next to protospacers are important for CRISPR-

mediated phage resistance

[37]

2010 First description of the CRISPR-Cas interference mechanism through Cas proteins cutting

target DNA at precise sites

[38]

2011 Identification of trans-activating crRNAs (tracrRNAs) [41]

2011 First successful transfer of a CRISPR-Cas system between two evolutionary distant

organisms: from Streptococcus thermophilus to Escherichia coli

[80]

2012 First reports documenting functional CRISPR-Cas systems reconstructed in vitro and

suggesting their potential application as RNA-programmable genome editing tools

[42,48]

2013 First reports demonstrating the use of CRISPR-Cas tools for efficient genome editing in

mammalian cells

[52,53]

2013 First reports showing efficient genome engineering at multiple loci in mice, through the use of

CRISPR-Cas tools

[59–61]
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of their genomic structure suggested an underlying, probably important but yet-unknown

biological function [22].

By examining SRSR loci in many archaea and bacteria, it was possible to detect a set of four

genes in their vicinity (cas1–cas4) that encoded proteins possibly associated with the clustered

repeats [23]. This 2002 publication [23], from a team of microbiologists in the Netherlands,

credited a proposal by Francisco J.M. Mojica's group to unify the diversity of names and labels

used in the literature for these DNA repeated elements under the concept “clustered
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Figure 1. CRISPR-Cas Tools for Mammalian Genome Editing Derive from Prokaryotic Immune Systems. (A) The naturally occurring Type II CRISPR-Cas

system in Streptococcus pyogenes and the mechanism of defense against viruses. The CRISPR-Cas locus is composed of four cas genes, a tracrRNA-encoding region

and a CRISPR-spacer array. Cas9 proteins and precursor-crRNA (pre-crRNA) transcripts are bound through tracrRNA molecules in a ‘pre-complex’ in which RNAs are

processed, through cleavage by endonuclease RNase III, into mature crRNA:tracrRNA:Cas9 complexes. When an appropriate PAM (protospacer adjacent motif; NGG in

S. pyogenes) is detected in the genome of an invading virus, if the adjacent region matches the spacer of the associated crRNA, Cas9 catalyzes a DSB (double-strand

break) that halts infection. (B) CRISPR-Cas9 tools for target genome editing in mammalian cells and embryos. Cells can be transfected with plasmids that express single-

guide RNA (sgRNA) and Cas9, with Cas9 protein complexed with sgRNA (in the form of a ribonucleoprotein, RNP), or transduced with viral particles bearing sgRNA/

Cas9-expressing cassettes, usually lentivirus or adeno-associated virus (AAV). Mammalian embryos can be microinjected or electroporated with Cas9 protein, Cas9

RNA, individual tracrRNA/crRNA, or sgRNA. (C) After reconstitution in the nucleus of the cell/embryo, the CRISPR-Cas9 compounds cut the DNA as a DSB, which is

repaired by endogenous mechanisms. The nonhomologous end-joining (NHEJ) route is associated with the insertion and deletion (INDEL) of nucleotides, usually resulting

in gene disruption. The homology-directed repair (HDR) route, in the presence of single-strand DNA (ssDNA) or double-strand DNA (dsDNA) oligonucleotides with

homology to sequences surrounding the target DSB, drives repair by introducing exogenous DNA sequences, which normally leads to knock-in/reporter insertion or gene

editing. Not drawn to scale.
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regularly-interspaced short palindromic repeats”, with the acronym CRISPR. This name rapidly

became popular and was readily accepted in the still-incipient field.

CRISPR-Cas Systems Involved in Bacterial Immunity

Until 2005 there was no clear evidence of the biological function or the underlying mechanism

associated with the CRISPR arrays. The first suggestion of a putative link between CRISPR and

prokaryotic immunity arose from the discovery that some of the spacers were homologous to

DNA sequences from bacteriophages or plasmids [24]. Indeed, some bacteria carrying CRISPR

arrays were known to be resistant to phages, which were shown to bear these sequences [24].

This fundamental observation, independently confirmed by other laboratories [25,26], strongly

supported the idea that CRISPR elements were associated with some sort of a bacterial defense

system. A tentative mechanism of action was proposed [24], involving target recognition by

CRISPR-RNA molecules [20,27], reminiscent of the eukaryotic interference RNA [24,28]. One of

these 2005 studies [26] was also the first to observe a short stretch of conserved DNA next to the

protospacers (the original sequence in viruses and other foreign genetic elements from which the

spacers were derived [29]), which would later be termed the protospacer adjacent motif (PAM)

[30].

CRISPR element involvement in bacterial immunity was confirmed experimentally in 2007 by

Rodolphe Barrangou, Philippe Horvath and collaborators [31]. This landmark publication dem-

onstrated that resistance to bacteriophage infection can be developed by a sensitive bacterial

strain through acquisition of spacers that match the viral genome [31]. CRISPR arrays in

prokaryotes had been previously found to produce numerous small RNAs [20,27,32]. In

2008, Brouns et al. [33] showed that these CRISPR RNAs (crRNAs) have a crucial role in

driving antiviral defense. Moreover, their results suggested that DNA was the target of CRISPR

action. Indeed, Luciano Marraffini and Erik Sontheimer subsequently reported that CRISPR

could efficiently interfere with the horizontal transfer of plasmid sequences through DNA

targeting [34]. The observation that there is a dynamic interplay between the spacer content

of CRISPR arrays and potential targets in natural microbial communities further supported a

connection between CRISPR genotype and host immunity [35]. These findings corroborated

CRISPR-Cas as a general genetic barrier to horizontally transferred DNA and an efficient

adaptive immune system in prokaryotes [36].

Over the following years, these seminal discoveries allowed further detailed characterization of

the CRISPR mechanism of action. PAM sequences appeared to be important for interference

[37], and these motifs emerged as a common feature in many systems [29,30], further

supporting their functional relevance. The interference/defense mechanism was then defined

as Cas protein cleavage of target DNA next to a PAM [38]. However, some systems were

documented to cleave RNA instead, not requiring a specific sequence motif next to the target

[39,40]. Another crucial piece of information of CRISPR-Cas was uncovered in 2011 [41], the

existence in particular systems of an additional small RNA molecule, the trans-activating crRNA

(tracrRNA), which was needed to generate mature crRNA molecules. TracrRNAs are exclusive

of some Class 2 systems (see below), where, in addition to their implication in crRNA maturation,

they also bridge crRNA and the Cas protein responsible for target cleavage [42]. By that time,

many CRISPR-Cas systems had been identified [43] and partially characterized in archaea and

bacteria [44] (Box 2). This large amount of information on CRISPR-Cas systems led to the first

attempt to classify them, from an evolutionary perspective, into distinct functional and structural

types (Type I, II, and III) and subtypes [45]. A top level classification, the Class category (that is,

Class 1, comprising types I, III, and IV, and Class 2, including types II and V), has recently been

adopted [46]. In contrast to Class 1, Class 2 systems require only one Cas protein (Cas9 in the

case of Type II systems, instead of a multiprotein complex as in Class 1) for target recognition

and cleavage, producing single DNA cuts [47]. These properties of Class 2 systems explain why

Trends in Microbiology, October 2016, Vol. 24, No. 10 815



Type II were chosen among characterized CRISPR-Cas systems for development of future

applications based on target cleavage.

CRISPR-Cas Introduced as New Genome-Editing Tools

In the summer of 2012 two independent teams reported the biochemical properties of partially

reconstituted CRISPR-Cas systems in vitro, and went beyond the state-of-the-art knowledge by

suggesting that its elements could be used as genome-editing tools [42,48]. In a combined

effort, the laboratories of Jennifer Doudna in the USA and Emmanuelle Charpentier in Sweden

reconstituted in vitro and demonstrated the function of three of the six elements of the

Streptococcus pyogenes CRISPR-Cas9 system (tracrRNA, crRNA and Cas9 protein; see

Figure 1A), which target a double-strand break (DSB) and cut a specific DNA sequence

homologous to the crRNA spacer region [42]. The same study also showed how tracrRNA

and crRNA could be fused into a sgRNA, a chimeric synthetic RNA molecule that retains the full

properties of the two original small RNAs. This remarkable achievement further simplified an

already very simple RNA-directed DNA endonuclease mechanism for use as a tool in program-

mable genome editing [42].

In parallel to the Doudna and Charpentier study [42,49], the Siksnys group collaborated with

Barrangou and Horvath to assess the function of the Streptococcus thermophilus Type II system

in vitro [48]. Their results were similar, and demonstrated the crucial role of crRNA and Cas9

complexes in directing DSB in crRNA-targeted DNA sequences. They also understood the

relevance of these findings, and proposed that universal programmable RNA-guided DNA

endonucleases could be engineered as unique molecular tools for RNA-directed DNA surgery

[48]. These two inspiring publications triggered a few laboratories to assess the conjectured

genome-editing capacities of these newly characterized bacteria-derived, RNA-programmable

DNA endonucleases [50].

It took less than 6 months to experimentally confirm the predictions of these founder publications

of the nascent field of CRISPR-Cas9 technology. By January 2013, three independent US teams,

one led by Luciano Marraffini [51], another by Feng Zhang [52], in collaboration with Luciano

Marraffini, and a third one by George Church [53], communicated the successful editing of

bacterial [51] and mammalian genomes [52,53] using Cas9. CRISPR-Cas9 tools derived from S.

pyogenes were improved, and the cas9 gene adapted to mammals by human codon-optimi-

zation, for efficient genome modification of various mammalian cell types from mice and humans

[52,53], including pluripotent cells. Later the same month, an independent study also reported the

formation of DSB at a specific locus, in human cells, using CRISPR-Cas9 methods [54]. The

current CRISPR excitement had begun and the rest of the scientific community, including many

who had probably not noticed the two 2012 publications on in vitro studies, learned of these far-

reaching tools for genome editing in eukaryotes [55–57] and prokaryotes [57,58].

It took a few more months, still in 2013, before the first publications appeared that reported

similar in vivo findings in vertebrates. A team in China presented preliminary results on genome

Box 2. First Successful Attempt Transferring a CRISPR-Cas System between Evolutionary Distant

Organisms

Until 2011, the CRISPR-Cas systems had always been studied in vitro or using their endogenous hosts. At the end of that

year, a collaborative effort in the already very active CRISPR field, led by Virginijus Siksnys in Lithuania, provided the first

experimental demonstration that one such CRISPR-Cas system could be transferred between the evolutionarily very

distant bacterial species Streptococcus thermophilus and Escherichia coli, with transmission of the immunity developed

by the former bacterium into the latter [80]. This was an outstanding achievement, as the associated evolutionary

distance between these two species is greater than that between humans and yeast [81,82]. This experiment illustrated

the broad permissiveness of CRISPR-Cas systems and proved that CRISPR arrays could be reprogrammed to target

novel sequences and operate across species as self-contained units [80].
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editing in mouse and zebrafish embryos, although they did not provide information regarding

germ-line transmission of the mutations induced by CRISPR-Cas-mediated genome editing

[59]. CRISPR-Cas9 was officially presented as the newest tool for improved targeted mamma-

lian transgenesis in May 2013, when Rudolf Jaenisch's laboratory, in collaboration with Feng

Zhang, published their impressive study introducing multiple mutations in specific genes in a

single step as well as simultaneous editing of two genes through direct delivery of CRISPR-Cas9

reagents into mouse embryos or ES cells [60]. Later that year, the same laboratory further

documented the versatility of CRISPR-Cas9 approaches for mouse genome editing by showing

its application in producing a knock-in reporter and conditional mutant alleles [61]. These four

pioneer articles [52,53,60,61], together with the deposition and efficient academic dissemination

of all described CRISPR-Cas9 reagents through the non-profit plasmid repository Addgene [62],

launched a myriad of in vitro studies in many cell types and in vivo experiments in many

mammalian species [55,56,63] (Figure 1B, Box 3).

Concluding Remarks

Researchers have been astonished to confirm the ease, efficiency, and apparently unlimited

number of applications that arise from the use of CRISPR-Cas components. It is important,

however, that we not forget the origin of these tools. CRISPR-Cas systems have been evolving in

bacteria and archaea subject to strong selection by infectious genetic elements for billions of

years. It should hence not be a surprise to discover that, after this long period of optimization of

tools meant to cleave intruder DNA, these elements would also perform most efficiently for

genome editing outside their natural context. That which today benefits mammals is derived

from what once evolved in archaea and bacteria. Likewise, the reagents we now apply for

genome editing in mammals could not be understood without the systematic, fundamental, and

often underestimated contribution of the many microbiologists who discovered, dissected and

described the functional compounds of the native CRISPR-Cas systems [47,64].

The characterization of other known and to be discovered CRISPR-Cas systems from different

prokaryotes [46,65,66] ensures a regular flow of new reagents with slightly different and useful

properties [67,68]. Notably, this growing list includes Cpf1 [69], a biochemically validated

nuclease of Type V CRISPR-Cas systems [46]. Compared to Cas9, Cpf1 requires a different,

T-rich PAM sequence at the 50 location, and interacts with a single shorter RNA molecule,

producing PAM-distal protruding ends upon cutting the DNA [69]. Together with the generation

of improved mutant variants of currently known Cas proteins [70–72], through the structure-

guided rational design of Cas9 PAM variants [73,74], and with the description of similar gene-

editing properties from unrelated immune systems of prokaryotes (i.e., prokaryotic Argonaute,

Box 3. The Successful Application of CRISPR-Cas Tools for Mammalian Genome Editing

In mammals, CRISPR-Cas9 tools have now been applied successfully in numerous projects:

� To functionally assess mutations in coding [83,84] and noncoding [85,86] mouse genomic DNA sequences.

� To generate genome-edited nonhuman primates [87].

� To explore genome editing in nonviable human embryos [88].

� To alter epigenetic markers leading to the activation of specific genes [89].

� To generate genome-edited livestock for biomedical [90] and agricultural applications [91].

� To inactivate multiple retroviral genomic insertions simultaneously in porcine cells, for xenotransplation purposes [92].

� To assess gene and cell therapy approaches for human diseases [93].

� To develop lentiviral knockout libraries that facilitate forward genetics in human cells [94–96].

� To reproduce chromosomal rearrangements, large inversions, and translocations observed in patients that were

extremely difficult to model in human cells [97] and in mice [98].

� To apply rapid somatic genome-editing approaches for cancer modeling [99].

� To correct the genome in patient-derived induced pluripotent cells (iPS) [100,101].

� To develop in vivo genome-editing protocols [67] and promising somatic gene therapy approaches for devastating

degenerative [102–104] or rare [105,106] diseases in animal models.

Outstanding Questions

Are there further CRISPR-Cas and

CRISPR-like systems in prokaryotic

genetic elements that could be har-

nessed for genome editing? If so, will

they allow for a notable improvement of

this technology?

Do other yet unknown mechanisms

exist in bacteria and archaea that could

be applied to modify the eukaryotic

genome?

Can the engineered CRISPR-Cas tools

be further improved for more precise

mammalian genome editing?

Can we envisage more applications of

CRISPR-Cas components in eukary-

otic cells?

Will the CRISPR-Cas technology soon

be reasonably safe to be applied in

humans to cure genetic disorders?

Will society and governments reach a

consensus, with the help of research-

ers, on the ethics and regulatory con-

siderations of the use of CRISPR-Cas

technology for gene therapy and envi-

ronmental applications?
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pAgo [75,76]), all these approaches will further widen our capacity to edit complex genomes at

will (see Outstanding Questions).
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